Respuesta :

Answer:

The answer for

  1. a⁹b¹⁰
  2. bdc⁷

Step-by-step explanation:

You have to apply Indices Law :

[tex] {a}^{m} \times {a}^{n} ⇒ {a}^{m + n} [/tex]

[tex] {a}^{m} \div {a}^{n} ⇒ {a}^{m - n} [/tex]

Question 1:

[tex] {a}^{4} \times {b}^{8} \times {a}^{5} \times {b}^{2} \\ = ( {a}^{4 + 5} ) \times ( {b}^{8 + 2} ) \\ = {a}^{9} \times {b}^{10} \\ = {a}^{9} {b}^{10} [/tex]

Question 2:

[tex] {c}^{3} \times d \times {c}^{4} \times b \\ = b \times d \times ({c}^{3 + 4} ) \\ = bd \times {c}^{7} \\ = bd {c}^{7} [/tex]

Question 3:

[tex] \frac{ {x}^{5} }{ {x}^{2} } \\ = {x}^{5} \div {x}^{2} \\ = {x}^{5 - 2} \\ = {x}^{3} [/tex]