Let ????(t)=⟨t2,1−t,4t⟩r(t)=⟨t2,1−t,4t⟩. Calculate the derivative of ????(t)⋅????(t)r(t)⋅a(t) at t=2t=2, assuming that ????(2)=⟨2,5,−3⟩a(2)=⟨2,5,−3⟩ and ????′(2)=⟨4,−3,9⟩

Respuesta :

Answer:

The  derivative is  [tex]\frac{ d (r(t) \cdot a(t))}{dt} = 82[/tex]

Step-by-step explanation:

From the question we are  told that

      [tex]r(t) = (t^2 ,1 - t , 4t)[/tex]

       [tex]a(2) = (2, 5, -3)[/tex] and  [tex]a'(2) = (4,-3 , 9)[/tex]

At  t  = 2  

       [tex]r(t) = (2^2 ,1 - 2 , 4(2))[/tex]

       [tex]r(t) = (4 ,-1 , 8 )[/tex]

Now  the derivative  of r(t) is  

      [tex]r'(t) = (2t, -1 ,4)[/tex]

At  t  = 2  

     [tex]r'(t) = (2(2), -1 ,4)[/tex]

     [tex]r'(t) = (4, -1 ,4)[/tex]

Now the derivative   of  [tex]r(t) \cdot a(t)[/tex]   At  t = 2 is

        [tex]= r'(2) a(2) + a'(2)r(2)[/tex]

         [tex]= (4,-1,4)(2,5,-3) + (4,-3,9)(4,-1,8)[/tex]

        [tex]= (8 - 5 -12) + (16+3+72)[/tex]

       [tex]= -9 + 91[/tex]

      [tex]\frac{ d (r(t) \cdot a(t))}{dt} = 82[/tex]