Respuesta :

Answer:

The reference angle of [tex]\frac{2\pi}{3}[/tex] is [tex]\frac{\pi}{3}[/tex]

Step-by-step explanation:

Given

[tex]\frac{2\pi}{3}[/tex]

Required

Which represent its reference angle

The very first step is to determine the quadrant of the given angle

For better understanding;

Convert [tex]\frac{2\pi}{3}[/tex] to degrees

[tex]\frac{2\pi}{3}[/tex] = [tex]\frac{2}{3} * 180[/tex]

[tex]\frac{2\pi}{3}[/tex] = [tex]\frac{2 * 180}{3}[/tex]

[tex]\frac{2\pi}{3}[/tex] = [tex]\frac{360}{3}[/tex]

[tex]\frac{2\pi}{3}[/tex] = [tex]120[/tex]

120 degrees in in the second quadrant; Hence, [tex]\frac{2\pi}{3}[/tex] is in the second quadrant

The reference angle of [tex]\frac{2\pi}{3}[/tex] is calculated using the following formula;

[tex]\pi - \frac{2\pi}{3}[/tex]

Rewrite [tex]\pi[/tex]

[tex]\pi - \frac{2\pi}{3} = \frac{3\pi}{3} - \frac{2\pi}{3}[/tex]

Take LCM

[tex]\pi - \frac{2\pi}{3} = \frac{3\pi - 2\pi}{3}[/tex]

[tex]\pi - \frac{2\pi}{3} = \frac{\pi}{3}[/tex]

Hence, the reference angle of [tex]\frac{2\pi}{3}[/tex] is [tex]\frac{\pi}{3}[/tex]

Answer:

pi/3

Step-by-step explanation: