Respuesta :

Answer:

option 1 both statements are true

Step-by-step explanation:

Prove by PMI -- Principle of Mathematical  Induction

1) n³ + 2n

n= 1 , 1³ +2*1 = 1+2 = 3 = 3*1   ---->divisible by 3

n = 2 ; 2³ + 2*2 = 8+4 = 12  = 3*4  ----> is divisible by 3

Assume that It is valid for n = k ;  

[tex]k^{3}+2k[/tex] = 3*m -----(I) , for all m ∈ N

We have to prove for n =k +1 , the statement is true.

n = k+1, [tex](k+1)^{3}+2(k +1) =k^{3}+3k^{2}+3k +1 +2k +2[/tex]

                                           = k³ + 3k² + 3k + 3 + 2k

                                           =  k³ +  2k + 3k² + 3k + 3

                                           = 3m + 3 (k² + k + 1)

                                          = 3(3 + [k² + k + 1] ) is divisible by 3

Therefore, this statement is true

2) [tex]5^{2n}-1\\[/tex]

[tex]n=1 ; 5^{2}-1 = 25 -1 = 24 divisible by 24\\\\n = 2 ; 5^{2*2}-1 = 5^{4}-1 = 625 - 1 = 624 divisible by 24[/tex]

This statement is also true