Respuesta :
Answer:
x^2 +5x+6
----------------------
2x+5
Step-by-step explanation:
1
-----------------
1/(x+2) + 1/(x+3)
Multiply by ( x+2) * (x+3) in the numerator and denominator
1 * ( x+2) * (x+3)
-----------------
(1/(x+2) + 1/(x+3)) *( x+2) * (x+3)
Distribute
( x+2) * (x+3)
-----------------
((x+3) + (x+2))
Combine like terms
( x+2) * (x+3)
-----------------
2x+5
Foil the numerator
x^2 +2x+3x+6
---------------------
2x+5
Combine like terms
x^2 +5x+6
----------------------
2x+5
Answer:
B. [tex]\frac{x^2+5x+6}{2x+5}[/tex]
Step-by-step explanation:
[tex]\displaystyle \frac{1}{\frac{1}{x+2}+\frac{1}{x+3}}[/tex]
Add the fractions in the denominator.
[tex]\frac{1(x+3)}{\left(x+2\right)\left(x+3\right)}+\frac{1(x+2)}{\left(x+2\right)\left(x+3\right)}[/tex]
Denominators are equal, so combine.
[tex]\frac{x+3+x+2}{\left(x+2\right)\left(x+3\right)}[/tex]
Combine like terms.
[tex]\frac{2x+5}{\left(x+2\right)\left(x+3\right)}[/tex]
Back to the problem.
[tex]\displaystyle\frac{1}{\frac{2x+5}{\left(x+2\right)\left(x+3\right)}}[/tex]
Apply fraction rule 1/b/c = c/b
[tex]\frac{\left(x+2\right)\left(x+3\right)}{2x+5}[/tex]
Expand the brackets in the numerator.
[tex]\frac{x^2+5x+6}{2x+5}[/tex]