Respuesta :
Answer:
The probability that you are able to guess ten or more correct answers is P(x≥10) = 0.0026
Step-by-step explanation:
This can be modeled by a binomial random variable, with sample size n=20 and probabillity of success p=0.2.
The probability of getting k answers right can be calculated as:
[tex]P(x=k)=\dbinom{n}{k}p^k(1-p)^{n-k}=\dbinom{20}{k}\cdot0.2^k\cdot0.8^{20-k}[/tex]
Now, we have to calculate the probabiltiy that 10 or more answers are correctly answered guessing. This is P(x≥10).
[tex]P(x\geq10)=P(x=10)+P(x=11)+P(x=12)+P(x=13)+P(x\geq14)[/tex]
Note: the expression is simplified for x≥14 because we know the additional probability is less than 0.00005.
[tex]P(x=10)=\dbinom{20}{10}\cdot0.2^{10}\cdot0.8^{10}=184756\cdot0.0000001\cdot0.1074=0.0020\\\\\\P(x=11)=\dbinom{20}{11}\cdot0.2^{11}\cdot0.8^{9}=167960\cdot0.00000002\cdot0.1342=0.0005\\\\\\P(x=12)=\dbinom{20}{12}\cdot0.2^{12}\cdot0.8^{8}=125970\cdot0\cdot0.1678=0.0001\\\\\\P(x=13)=\dbinom{20}{13}\cdot0.2^{13}\cdot0.8^{7}=77520\cdot0.000000001\cdot0.2097=0.0000\\\\\\P(x\geq14)=0.0000[/tex]
[tex]P(x\geq10)=0.0020+0.0005+0.0001+0.0000+0.0000=0.0026[/tex]
The probability that you are able to guess ten or more correct answers is P(x≥10) = 0.0026