For n ≥ 1, let S be a set containing 2n distinct real numbers. By an, we denote the number of comparisons that need to be made between pairs of elements in S in order to determine the maximum and minimum elements in S.

Requried:
a. Find a1 and a2
b. Find a recurrence relation for an.
c. Solve the recurrence in (b) to find a formula for an.

Respuesta :

Answer:

A) [tex]a_{1}[/tex] = 1, [tex]a_{2}[/tex] = 4

B) [tex]a_{n}[/tex] = 2[tex]a_{n-1}[/tex] + 2

C)    [tex]a_{n} = 2^{n-1} + 2^n -2\\a_{n} = 2^n + 2^{n-1} -2[/tex]

Step-by-step explanation:

For n ≥ 1 ,

S is a set containing 2^n distinct real numbers

an = no of comparisons to be made between pairs of elements of s

A)

[tex]a_{1}[/tex] = no of comparisons in set (s)

that contains 2 elements = 1

[tex]a_{2}[/tex] = no of comparisons in set (s) containing 4 = 4

B)  an = 2a[tex]_{n-1}[/tex] + 2

C) using the recurrence relation

a[tex]_{n}[/tex] = 2a[tex]_{n-1}[/tex] + 2

substitute the following values  2,3,4  .......... for n

a[tex]_{2}[/tex] = 2a[tex]_{1}[/tex] + 2

a[tex]_{3}[/tex] = 2a[tex]_{2}[/tex] + 2 = [tex]2^{2} a_{1} + 2^{2} + 2[/tex]

a[tex]_{4}[/tex] = [tex]2a_{3} + 2 = 2(2^{2}a + 2^{2} + 2 ) + 2[/tex]

    = [tex]2^{n-1} a_{1} + \frac{2(2^{n-1}-1) }{2-1}[/tex]   ---------------- (x)

since  2^1 + 2^2 + 2^3 + ...... + 2^n-1 =  [tex]\frac{2(2^{n-1 }-1) }{2-1}[/tex]

applying the sum formula for G.P

[tex]\frac{a(r^n -1)}{r-1}[/tex]

Note ; a = 2, r =2 , n = n-1

a1 = 1

so equation x becomes

[tex]a_{n} = 2^{n-1} + 2^n - 2\\a_{n} = 2^n + 2^{n-1} - 2[/tex]