contestada

Point A of the circular disk is at the angular position θ = 0 at time t = 0. The disk has angular velocity ω0 = 0.17 rad/s at t = 0 and subsequently experiences a constant angular acceleration α = 1.3 rad/s2. Determine the velocity and acceleration of point A in terms of fixed i and j unit vectors at time t = 1.7 s.

Respuesta :

Given that,

Angular velocity = 0.17 rad/s

Angular acceleration = 1.3 rad/s²

Time = 1.7 s

We need to calculate the angular velocity

Using angular equation of motion

[tex]\omega=\omega_{0}+\alpha t[/tex]

Put the value in the equation

[tex]\omega=0.17+1.3\times1.7[/tex]

[tex]\omega=2.38(k)\ m/s[/tex]

We need to calculate the angular displacement

Using angular equation of motion

[tex]\theta=\theta_{0}+\omega_{0}t+\dfrac{\alpha t^2}{2}[/tex]

Put the value in the equation

[tex]\theta=0+0.17\times1.7+\dfrac{1.3\times1.7^2}{2}[/tex]

[tex]\theta=2.1675\times\dfrac{180}{\pi}[/tex]

[tex]\theta= 124.18^{\circ}[/tex]

We need to calculate the velocity at point A

Using equation of motion

[tex]v_{A}=v_{0}+\omega\times r[/tex]

Put the value into the formula

[tex]v_{A}=0+2.38(k) \times0.2(\cos(124.18)i+\sin(124.18)j))[/tex]

[tex]v_{A}=0.476\cos(124.18)j+0.476\sin(124.18)i[/tex]

[tex]v_{A}=(-0.267j-0.393i)\ m/s[/tex]

We need to calculate the acceleration at point A

Using equation of motion

[tex]a_{A}=a_{0}+\alpha\times r+\omega\times(\omega\times r)[/tex]

Put the value in the equation

[tex]a_{A}=0+1.3(k)\times0.2(\cos(124.18)i+\sin(124.18)j)+2.38\times2.38\times0.2(\cos(124.18)i+\sin(124.18)j)[/tex]

[tex]a_{A}=0.26\cos(124.18)i+0.26\sin(124.18)j+(2.38)^2\times0.2(\cos(124.18)i+\sin(124.18)j)[/tex]

[tex]a_{A}=-0.146j-0.215i−0.636i+0.937j[/tex]

[tex]a_{A}=0.791j-0.851i[/tex]

[tex]a_{A}=-0.851i+0.791j\ m/s^2[/tex]

Hence, (a). The velocity at point A is [tex](-0.267j-0.393i)\ m/s[/tex]

(b). The acceleration at point A is [tex](-0.851i+0.791j)\ m/s^2[/tex]