0.17T
When a charged particle moves into a magnetic field perpendicularly, it experiences a magnetic force [tex]F_{M}[/tex] which is perpendicular to the magnetic field and direction of the velocity. This motion is circular and hence there is a balance between the centripetal force [tex]F_{C}[/tex] and the magnetic force. i.e
[tex]F_{C}[/tex] = [tex]F_{M}[/tex] --------------(i)
But;
[tex]F_{C}[/tex] = [tex]\frac{mv^2}{r}[/tex] [m = mass of the particle, r = radius of the path, v = velocity of the charge]
[tex]F_{M}[/tex] = qvB [q = charge on the particle, B = magnetic field strength, v = velocity of the charge ]
Substitute these into equation (i) as follows;
[tex]\frac{mv^2}{r}[/tex] = qvB
Make B subject of the formula;
B = [tex]\frac{mV}{qr}[/tex] ---------------(ii)
Known constants
m = 1.67 x 10⁻²⁷kg
q = 1.6 x 10⁻¹⁹C
From the question;
v = 1.4 x 10⁷m/s
r = 0.85m
Substitute these values into equation(ii) as follows;
B = [tex]\frac{1.67 * 10 ^{-27} * 1.4 * 10^{7}}{1.6 * 10^{-19} * 0.85}[/tex]
B = 0.17T
Therefore, the magnetic field strength is 0.17T