contestada

A proton moves at a speed 1.4 × 10^7 m/s perpendicular to a magnetic field. The field causes the proton to travel in a circular path of radius 0.85 m. What is the field strength?

Respuesta :

Answer:

0.17T

Explanation:

When a charged particle moves into a magnetic field perpendicularly, it experiences a magnetic force [tex]F_{M}[/tex] which is perpendicular to the magnetic field and direction of the velocity. This motion is circular and hence there is a balance between the centripetal force [tex]F_{C}[/tex] and the magnetic force. i.e

[tex]F_{C}[/tex] = [tex]F_{M}[/tex]     --------------(i)

But;

[tex]F_{C}[/tex] = [tex]\frac{mv^2}{r}[/tex]   [m = mass of the particle, r = radius of the path, v = velocity of the charge]

[tex]F_{M}[/tex] = qvB [q = charge on the particle, B = magnetic field strength, v = velocity of the charge ]

Substitute these into equation (i) as follows;

[tex]\frac{mv^2}{r}[/tex] = qvB

Make B subject of the formula;

B = [tex]\frac{mV}{qr}[/tex]            ---------------(ii)

Known constants

m = 1.67 x 10⁻²⁷kg

q = 1.6 x 10⁻¹⁹C

From the question;

v = 1.4 x 10⁷m/s

r = 0.85m

Substitute these values into equation(ii) as follows;

B = [tex]\frac{1.67 * 10 ^{-27} * 1.4 * 10^{7}}{1.6 * 10^{-19} * 0.85}[/tex]

B = 0.17T

Therefore, the magnetic field strength is 0.17T