Answer:
Mean of the sample = 27.83
The variance of the the sample = 106.96
Standard deviation of the sample = 10.34
Step-by-step explanation:
Step(i):-
Given random sample of six employees
x 26 32 29 16 45 19
mean of the sample
[tex]x^{-} = \frac{26+32+29+16+45+19}{6} = 27.83[/tex]
Mean of the given data = 27.83
Step(ii):-
Given data
x : 26 32 29 16 45 19
x - x⁻ : -1.83 4.17 1.17 -11.83 17.17 -8.83
(x - x⁻)² : 3.3489 17.3889 1.3689 139.9489 294.80 77.9689
∑ (x-x⁻)² = 534.8245
Given sample size 'n' =6
The variance of given data
S² = ∑(x-x⁻)² / n-1
[tex]S^{2} = \frac{534.8245}{6-1} = 106.9649[/tex]
The variance of the given sample = 106.9649
Step(iii):-
Standard deviation of the given data
[tex]S = \sqrt{variance} = \sqrt{106.9649} =10.3423[/tex]
Standard deviation of the sample = 10.3423