A spherical shell rolls without sliding along the floor. The ratio of its rotational kinetic energy (about an axis through its center of mass) to its translational kinetic energy is:

Respuesta :

Answer:

The ratio  is  [tex]\frac{RE}{TE} = \frac{2}{3}[/tex]

Explanation:

Generally  the Moment of inertia of a spherical object (shell) is mathematically represented as

              [tex]I = \frac{2}{3} * m r^2[/tex]

Where m is  the mass of the spherical object

       and   r is the radius  

Now the the rotational kinetic energy can be mathematically represented as

       [tex]RE = \frac{1}{2}* I * w^2[/tex]

Where  [tex]w[/tex] is the angular velocity which is mathematically represented as

             [tex]w = \frac{v}{r}[/tex]

=>           [tex]w^2 = [\frac{v}{r}] ^2[/tex]

So

             [tex]RE = \frac{1}{2}* [\frac{2}{3} *mr^2] * [\frac{v}{r} ]^2[/tex]

            [tex]RE = \frac{1}{3} * mv^2[/tex]

Generally the transnational  kinetic energy of this motion is  mathematically represented as

                [tex]TE = \frac{1}{2} mv^2[/tex]

So  

      [tex]\frac{RE}{TE} = \frac{\frac{1}{3} * mv^2}{\frac{1}{2} * m*v^2}[/tex]

       [tex]\frac{RE}{TE} = \frac{2}{3}[/tex]