Answer:
The ratio is [tex]\frac{RE}{TE} = \frac{2}{3}[/tex]
Explanation:
Generally the Moment of inertia of a spherical object (shell) is mathematically represented as
[tex]I = \frac{2}{3} * m r^2[/tex]
Where m is the mass of the spherical object
and r is the radius
Now the the rotational kinetic energy can be mathematically represented as
[tex]RE = \frac{1}{2}* I * w^2[/tex]
Where [tex]w[/tex] is the angular velocity which is mathematically represented as
[tex]w = \frac{v}{r}[/tex]
=> [tex]w^2 = [\frac{v}{r}] ^2[/tex]
So
[tex]RE = \frac{1}{2}* [\frac{2}{3} *mr^2] * [\frac{v}{r} ]^2[/tex]
[tex]RE = \frac{1}{3} * mv^2[/tex]
Generally the transnational kinetic energy of this motion is mathematically represented as
[tex]TE = \frac{1}{2} mv^2[/tex]
So
[tex]\frac{RE}{TE} = \frac{\frac{1}{3} * mv^2}{\frac{1}{2} * m*v^2}[/tex]
[tex]\frac{RE}{TE} = \frac{2}{3}[/tex]