The output S/N at thereceiver must be greater than 40 dB. The audio signal has zero mean, maximum amplitude of 1, power of ½ Wand bandwidth of 15 kHz. The power spectral density of white noise N0/2 = 10-10W/Hz and the power loss in the channel is 50 dB. Determine the transmit power required and the bandwidth needed.

Respuesta :

Given that,

The output signal at the receiver must be greater than 40 dB.

Maximum amplitude = 1

Bandwidth = 15 kHz

The power spectral density of white noise is

[tex]\dfrac{N}{2}=10^{-10}\ W/Hz[/tex]

Power loss in channel= 50 dB

Suppose, Using DSB modulation

We need to calculate the power required

Using formula of power

[tex]P_{L}_{dB}=10\log(P_{L})[/tex]

Put the value into the formula

[tex]50=10\log(P_{L})[/tex]

[tex]P_{L}=10^{5}\ W[/tex]

For DSB modulation,

Figure of merit = 1

We need to calculate the input signal

Using formula of FOM

[tex]FOM=\dfrac{\dfrac{S_{o}}{N_{o}}}{\dfrac{S_{i}}{N_{i}}}[/tex]

[tex]1=\dfrac{\dfrac{S_{o}}{N_{o}}}{\dfrac{S_{i}}{N_{i}}}[/tex]

[tex]\dfrac{S_{i}}{N_{i}W}=\dfrac{S_{o}}{N_{o}}[/tex]

Put the value into the formula

[tex]\dfrac{S_{i}}{2\times10^{-10}\times15\times10^{3}}<40\ dB[/tex]

[tex]\dfrac{S_{i}}{30\times10^{-7}}<10^{4}[/tex]

[tex]S_{i}<30\times10^{-3}[/tex]

[tex]S_{i}=30\times10^{-3}[/tex]

We need to calculate the transmit power

Using formula of power transmit

[tex]S_{i}=\dfrac{P_{t}}{P_{L}}[/tex]

[tex]P_{t}=S_{i}\times P_{L}[/tex]

Put the value into the formula

[tex]P_{t}=30\times10^{-3}\times10^{5}[/tex]

[tex]P_{t}=3\ kW[/tex]

We need to calculate the needed bandwidth

Using formula of bandwidth for DSB modulation

[tex]bandwidth=2W[/tex]

Put the value into the formula

[tex]bandwidth =2\times15[/tex]

[tex]bandwidth = 30\ kHz[/tex]

Hence, The transmit power is 3 kW.

The needed bandwidth is 30 kHz.