Answer:
32.6 feet
Step-by-step explanation:
The computation of the height of the tree is shown below:
Data provided in the question
One position H = 60 degree
Second position L = 20
B = 40 degree
Based on the above information, the calculations are as follows
In triangle ZWX,
[tex]\frac{h}{x}=tan(60^{\circ}) => x=\frac{h}{tan(60^{\circ})}[/tex]
In triangle ZWY
[tex]\frac{h}{x+L}=tan(40^{\circ}) => h=tan(40^{\circ})(x+20) => x=\frac{h}{tan(40^{\circ})}-20[/tex]
Now from equation 1 and equation 2
[tex]x=\frac{h}{tan(60^{\circ})}=\frac{h}{tan(40^{\circ})}-20[/tex]
i.e
[tex]20=\frac{h}{tan(40^{\circ})}-\frac{h}{tan(60^{\circ})} => h[1.1917535926-0.57735026919]=20[/tex]
Hence,
[tex]h=\frac{20}{[1.1917535926-0.57735026919]}[/tex]
= 32.55190728
= 32.6 feet
Hence, the height of the tree is 32.6 feet