Respuesta :
Answer:
(a) f = 0.58Hz
(b) vmax = 0.364m/s
(c) amax = 1.32m/s^2
(d) E = 0.1J
(e) [tex]x(t)=0.1m\ cos(2\pi(0.58s^{-1})t)[/tex]
Explanation:
(a) The frequency of the oscillation, in a spring-mass system, is calulated by using the following formula:
[tex]f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}[/tex] (1)
k: spring constant = 20.0N/m
m: mass = 1.5kg
you replace the values of m and k for getting f:
[tex]f=\frac{1}{2\pi}\sqrt{\frac{20.0N/m}{1.5kg}}=0.58s^{-1}=0.58Hz[/tex]
The frequency of the oscillation is 0.58Hz
(b) The maximum speed is given by:
[tex]v_{max}=\omega A=2\pi f A[/tex] (2)
A: amplitude of the oscillations = 10.0cm = 0.10m
[tex]v_{max}=2\pi (0.58s^{-1})(0.10m)=0.364\frac{m}{s}[/tex]
The maximum speed of the mass is 0.364 m/s.
The maximum speed occurs when the mass passes trough the equilibrium point of the oscillation.
(c) The maximum acceleration is given by:
[tex]a_{max}=\omega^2A=(2\pi f)^2 A[/tex]
[tex]a_{max}=(2\pi (0.58s^{-1}))(0.10m)=1.32\frac{m}{s^2}[/tex]
The maximum acceleration is 1.32 m/s^2
The maximum acceleration occurs where the elastic force is a maximum, that is, where the mass is at the maximum distance from the equilibrium point, that is, the acceleration.
(d) The total energy of the system is:
[tex]E=\frac{1}{2}kA^2=\frac{1}{2}(20.0N/m)(0.10m)^2=0.1J[/tex]
The total energy is 0.1J
(e) The displacement as a function of time is:
[tex]x(t)=Acos(\omega t)=Acos(2\pi ft)\\\\x(t)=0.1m\ cos(2\pi(0.58s^{-1})t)[/tex]