Demand for Tablet Computers The quantity demanded per month, x, of a certain make of tablet computer is related to the average unit price, p (in dollars), of tablet computers by the equation x = f(p) = 100 9 810,000 − p2 It is estimated that t months from now, the average price of a tablet computer will be given by p(t) = 400 1 + 1 8 t + 200 (0 ≤ t ≤ 60) dollars. Find the rate at which the quantity demanded per month of the tablet computers will be changing 25 months from now. (Round your answer to one decimal place.) tablet computers/month

Respuesta :

[tex]x = f ( p ) = \frac { 100 } { 9 } \sqrt { 810,000 - p ^ { 2 } } } \\\\ \qquad { p ( t ) = \dfrac { 400 } { 1 + \dfrac { 1 } { 8 } \sqrt { t } } + 200 \quad ( 0 \leq t \leq 60 ) }[/tex]

Answer:

12.0 tablet computers/month

Step-by-step explanation:

The average price of the tablet 25 months from now will be:

[tex]p ( 25) = \dfrac { 400 } { 1 + \dfrac { 1 } { 8 } \sqrt { 25 } } + 200 \\= \dfrac { 400 } { 1 + \dfrac { 1 } { 8 } \times 5 } + 200\\\\=\dfrac { 400 } { 1 + \dfrac { 5 } { 8 } } + 200\\p(25)=\dfrac { 5800 } {13}[/tex]

Next, we determine the rate at which the quantity demanded changes with respect to time.

Using Chain Rule (and a calculator)

[tex]\dfrac{dx}{dt}= \dfrac{dx}{dp}\dfrac{dp}{dt}[/tex]

[tex]\dfrac{dx}{dp}= \dfrac{d}{dp}\left[{ \dfrac { 100 } { 9 } \sqrt { 810,000 - p ^ { 2 } } }\right] =-\dfrac{100}{9}p(810,000-p^2)^{-1/2}[/tex]

[tex]\dfrac{dp}{dt}=\dfrac{d}{dt}\left[\dfrac { 400 } { 1 + \dfrac { 1 } { 8 } \sqrt { t } } + 200 \right]=-25\left[1 + \dfrac { 1 } { 8 } \sqrt { t } \right]^{-2}t^{-1/2}[/tex]

Therefore:

[tex]\dfrac{dx}{dt}= \left[-\dfrac{100}{9}p(810,000-p^2)^{-1/2}\right]\left[-25\left[1 + \dfrac { 1 } { 8 } \sqrt { t } \right]^{-2}t^{-1/2}\right][/tex]

Recall that at t=25, [tex]p(25)=\dfrac { 5800 } {13} \approx 446.15[/tex]

Therefore:

[tex]\dfrac{dx}{dt}(25)= \left[-\dfrac{100}{9}\times 446.15(810,000-446.15^2)^{-1/2}\right]\left[-25\left[1 + \dfrac { 1 } { 8 } \sqrt {25} \right]^{-2}25^{-1/2}\right]\\=12.009[/tex]

The quantity demanded per month of the tablet computers will be changing at a rate of 12 tablet computers/month correct to 1 decimal place.