Respuesta :

Answer:

[tex]\frac{dy}{dx}=\frac{x}{\sqrt {x^2+1}}[/tex]

Step-by-step explanation:

We want to find:

[tex]\frac{dy}{dx} \\y=\sqrt u\\\frac{d}{dx}(\sqrt{u})[/tex]

Given that:

[tex]u=x^2+1[/tex]

Applying the chain rule:

[tex]\frac{dy}{dx}=\frac{dy}{du}*\frac{du}{dx}[/tex]

Solving dy/du:

[tex]\frac{dy}{du}=\frac{d}{du}(\sqrt u)\\\frac{dy}{du}=\frac{1}{2\sqrt u}[/tex]

Solving du/dx:

[tex]\frac{d}{dx}(x^2+1) = 2x[/tex]

Therefore, dy/dx is determined by:

[tex]\frac{dy}{dx}=\frac{1}{2\sqrt u}*2x \\\frac{dy}{dx}=\frac{x}{\sqrt u}\\\frac{dy}{dx}=\frac{x}{\sqrt {x^2+1}}[/tex]