A man starts walking north at 5 ft/s from a point P. Five minutes later a woman starts walking south at 7 ft/s from a point 500 ft due east of P. At what rate are the people moving apart 15 min after the woman starts walking? (Round your answer to two decimal places.) ft/s

Respuesta :

Answer:

11.97 ft/s

Step-by-step explanation:

Let x be the  vertical distance of man from point P and y be the  vertical distance of woman from point P

Total time=5+15 =20  mins

[tex]\frac{dx}{dt}=5 ft/s[/tex]

[tex]\frac{dy}{dt}=7 ft/s[/tex]

Distance traveled by man in 20 min

a=[tex]5\times 20\times 60=6000 ft[/tex]

1 min=60 s

Distance traveled by Woman in 15 min

[tex]b=7\times 15\times 60=6300 ft[/tex]

z=500  ft

x+y=6000+6300=6900 ft

[tex]d=\sqrt{(x+y)^2+(500)^2}[/tex]

Using Pythagoras formula

[tex]Hypotenuse=\sqrt{(base)^2+(Perpendicular\;side)^2}[/tex]

[tex]d=\sqrt{(6900)^2+(500)^2}=6918.09 ft[/tex]

[tex]d=6918.09 ft[/tex]

[tex](x+y)^2+(500)^2=d^2[/tex]

Differentiate w.r.t t

[tex]2(x+y)(\frac{dx}{dt}+\frac{dy}{dt})=2d\frac{d d}{dt}[/tex]

[tex]2(6900)(5+7)=2(6918.09)\frac{d d}{dt}[/tex]

[tex]2\times 12\times 6900=2(6918.09)\frac{d d}{dt}[/tex]

[tex]\frac{d d}{dt}=\frac{2\times 12\times 6900}{2(6918.09)}[/tex]

[tex]\frac{d d}{dt}=11.97 ft/s[/tex]

Ver imagen lublana