Respuesta :
Answer:
The strength of the electric field is 29922.34 N/C
Explanation:
Given;
distance of the electric field, d = 5.2 cm = 0.052 m
charge of the small plastic bead, q = -9 nC = - 9 x 10⁻⁹ C
The strength of the electric field is calculated as;
[tex]E = \frac{kq}{d^2}[/tex]
where;
E is the electric field strength
k is coulomb's constant = 8.99 x 10⁹ Nm²/C²
[tex]E = \frac{(8.99*10^9)(9*10^{-9})}{(0.052)^2} \\\\E = 29922.34 \ N/C[/tex]
Therefore, the strength of the electric field is 29922.34 N/C
The strength of this electric field is equal to 29,922.34 N/C.
Given the following data:
- Radius = 5.2 cm
- Charge = -9.0 nC = [tex]-9 \times 10^{-9}\;C[/tex]
Conversion:
100 cm = 1 m
5.2 cm = 0.052 m
Scientific data:
- Coulomb's constant = [tex]8.99 \times 10^9\; Nm^2/C^2[/tex]
To calculate the strength of this electric field:
The formula for electric field strength.
Mathematically, the strength of this electric field is given by this formula:
[tex]E=\frac{qk}{r^2}[/tex]
Where:
- k is Coulomb's constant.
- q is the charge.
- r is the distance.
Substituting the given parameters into the formula, we have;
[tex]E=\frac{-9 \times 10^{-9}\times 8.99 \times 10^9}{0.052^2} \\\\E=\frac{80.91}{0.002704}[/tex]
E = 29,922.34 N/C.
Read more on electric field here: https://brainly.com/question/14372859