Answer:
95% confidence intervals about the population mean is
(51.7656 , 60.2344)
Step-by-step explanation:
Step(i):-
Given random sample of size 'n' =17
Given mean of the sample 'x⁻' = 56
Given standard deviation of sample 's' = 10
95% confidence intervals about the population mean is determined by
[tex](x^{-} - t_{0.05} \frac{s}{\sqrt{n} } ,x^{-} + t_{0.05} \frac{s}{\sqrt{n} } )[/tex]
Degrees of freedom
ν = n-1 = 17-1 =16
t₀.₀₅ = 1.7459 (from t-table)
Step(ii):-
95% confidence intervals about the population mean is determined by
[tex](x^{-} - t_{0.05} \frac{s}{\sqrt{n} } ,x^{-} + t_{0.05} \frac{s}{\sqrt{n} } )[/tex]
[tex](56 - 1.7459 \frac{10}{\sqrt{17} } ,56 + 1.7459 \frac{10}{\sqrt{17} } )[/tex]
( 56 - 4.2344 , 56 + 4.2344)
(51.7656 , 60.2344)
Conclusion:-
95% confidence intervals about the population mean is
(51.7656 , 60.2344)