Respuesta :

Answer:

[tex]( x_1 , y_1 , z_1 ) = < -7 + 4\sqrt{3} , -4 + 2\sqrt{3} , 7 - 2\sqrt{3} >\\\\( x_2 , y_2 , z_2 ) = < -7 - 4\sqrt{3} , -4 - 2\sqrt{3} , 7 + 2\sqrt{3} >\\[/tex]

Step-by-step explanation:

Solution:-

- We are given a parametric form for the vector equation of line defined by ( t ).

- The line vector equation is:

                        L: < 3 + 2t , t + 1 , 2 -t >

- The same 3-dimensional space is occupied by a unit sphere defined by the following equation:

                          [tex]S: x^2 + y^2 + z^2 = 1[/tex]

- We are to determine the points of intersection of the line ( L ) and the unit sphere ( S ).

- We will substitute the parametric equation of line ( L ) into the equation defining the unit sphere ( S ) and solve for the values of the parameter ( t ):

                        [tex]( 3 + 2t )^2 + ( 1 + t )^2 + ( 2 - t)^2 = 1\\\\( 9 + 12t + 4t^2 ) + ( t^2 + 2t + 1 ) + ( 4 + t^2 -4t ) = 1\\\\t^2 + 10t + 13 = 0\\\\[/tex]

- Solve the quadratic equation for the parameter ( t ):

                       [tex]t = -5 + 2\sqrt{3} , -5 - 2\sqrt{3}[/tex]

- Plug in each of the parameter value in the given vector equation of line and determine a pair of intersecting coordinates:

                      [tex]( x_1 , y_1 , z_1 ) = < -7 + 4\sqrt{3} , -4 + 2\sqrt{3} , 7 - 2\sqrt{3} >\\\\( x_2 , y_2 , z_2 ) = < -7 - 4\sqrt{3} , -4 - 2\sqrt{3} , 7 + 2\sqrt{3} >\\[/tex]