Answer:
Step-by-step explanation:
Let cases of Lyme disease = x
x = 2, 1, 3, 4, 5, 1, 2, 1, 6, 5, 4, 1
[tex]\sum x = 35[/tex]
[tex]\sum x^2 = 139[/tex]
y = 0, 1, 2, 1, 3, 5, 2, 3, 3, 3, 1, 0
[tex]\sum y = 24[/tex]
[tex]\sum y^2 = 72[/tex]
[tex]\sum xy = 55[/tex]
[tex]S_{xx} = \sum x^2 - (\sum x)^2/n\\S_{xx} = 139 - 35^2/12\\S_{xx} = 36.92\\S_{yy} = \sum y^2 - (\sum y)^2/n\\S_{yy} = 72 - 24^2/12\\S_{yy} = 24[/tex]
[tex]S_{xy} = \sum xy - ( \sum x \sum y)/n\\S_{xy} = 55 - (35*24)/12\\S_{xy} = -15[/tex]
b) Linear correlation between Lyme disease and drowning deaths.
[tex]r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}} }[/tex]
r = -15/ √(24*36.92)
r = -0.504