Respuesta :

Answer:

[tex]y=359x+1500[/tex]

Step-by-step explanation:

The data provided is as follows:

Months (x)     Costs  (y)

      1               $1,859

      3              $2,577

      8              $4,372

     12              $5,808

The slope intercept form is:

[tex]y = mx+b[/tex]

Here,

m = slope

b = intercept.

Compute the value of m and b as follows:

[tex]\begin{aligned} b &= \frac{\sum{Y} \cdot \sum{X^2} - \sum{X} \cdot \sum{XY} }{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} = \frac{ 14616 \cdot 218 - 24 \cdot 114262}{ 4 \cdot 218 - 24^2} \approx 1500 \\ \\m &= \frac{ n \cdot \sum{XY} - \sum{X} \cdot \sum{Y}}{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} = \frac{ 4 \cdot 114262 - 24 \cdot 14616 }{ 4 \cdot 218 - \left( 24 \right)^2} \approx 359\end{aligned}[/tex]

The equation in slope-intercept form to represent the total cost, y, of leasing a car for x months is:

[tex]y=359x+1500[/tex]