Answer:
[tex]y=359x+1500[/tex]
Step-by-step explanation:
The data provided is as follows:
Months (x) Costs (y)
1 $1,859
3 $2,577
8 $4,372
12 $5,808
The slope intercept form is:
[tex]y = mx+b[/tex]
Here,
m = slope
b = intercept.
Compute the value of m and b as follows:
[tex]\begin{aligned} b &= \frac{\sum{Y} \cdot \sum{X^2} - \sum{X} \cdot \sum{XY} }{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} = \frac{ 14616 \cdot 218 - 24 \cdot 114262}{ 4 \cdot 218 - 24^2} \approx 1500 \\ \\m &= \frac{ n \cdot \sum{XY} - \sum{X} \cdot \sum{Y}}{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} = \frac{ 4 \cdot 114262 - 24 \cdot 14616 }{ 4 \cdot 218 - \left( 24 \right)^2} \approx 359\end{aligned}[/tex]
The equation in slope-intercept form to represent the total cost, y, of leasing a car for x months is:
[tex]y=359x+1500[/tex]