If a varies directly as the cube root of B and if a equals to 3 when B equals to 64 find the formula connecting the variables hence find b when a equals to 15 / 4

Respuesta :

Answer:

a=k1[tex]\sqrt[3]{B}[/tex]

B=125

Step-by-step explanation:

Given :

a=3

B=64

According to question

a ∝ [tex]\sqrt[3]{B}[/tex]

therefore

a=k1 [tex]\sqrt[3]{B}[/tex]........Eq(1)

K1=[tex]\frac{a}{\sqrt[3]{B} }[/tex]......Eq(2)

Putting the value of a and B we get in Eq(2) we get

[tex]K1=\frac{3}{4}[/tex]

Putting the value of k1 in Eq(1)

[tex]a=\frac{3}{4}\sqrt{B}[/tex] .......................Eq(3)

putting the value of a=15/4 IN Eq(3) we get

[tex]\frac{15}{4}\ =\frac{3}{4} \sqrt[3]{B} \\\\\sqrt[3]{B}\ =\ 5\\Cubing\ both\ side\ we\ get\\B=125[/tex]