Suppose a random variable x is best described by a uniform probability distribution with range 22 to 55. Find the value of a that makes the following probability statements true.

a. P(X <= a) =0.95
b. P(X < a)= 0.49
c. P(X >= a)= 0.85
d. P(X >a )= 0.89
e. P(1.83 <= x <=a)= 0.31

Respuesta :

Answer:

(a) The value of a is 53.35.

(b) The value of a is 38.17.

(c) The value of a is 26.95.

(d) The value of a is 25.63.

(e) The value of a is 12.06.

Step-by-step explanation:

The probability density function of X is:

[tex]f_{X}(x)=\frac{1}{55-22}=\frac{1}{33}[/tex]

Here, 22 < X < 55.

(a)

Compute the value of a as follows:

[tex]P(X\leq a)=\int\limits^{a}_{22} {\frac{1}{33}} \, dx \\\\0.95=\frac{1}{33}\cdot \int\limits^{a}_{22} {1} \, dx \\\\0.95\times 33=[x]^{a}_{22}\\\\31.35=a-22\\\\a=31.35+22\\\\a=53.35[/tex]

Thus, the value of a is 53.35.

(b)

Compute the value of a as follows:

[tex]P(X< a)=\int\limits^{a}_{22} {\frac{1}{33}} \, dx \\\\0.95=\frac{1}{33}\cdot \int\limits^{a}_{22} {1} \, dx \\\\0.49\times 33=[x]^{a}_{22}\\\\16.17=a-22\\\\a=16.17+22\\\\a=38.17[/tex]

Thus, the value of a is 38.17.

(c)

Compute the value of a as follows:

[tex]P(X\geq a)=\int\limits^{55}_{a} {\frac{1}{33}} \, dx \\\\0.85=\frac{1}{33}\cdot \int\limits^{55}_{a} {1} \, dx \\\\0.85\times 33=[x]^{55}_{a}\\\\28.05=55-a\\\\a=55-28.05\\\\a=26.95[/tex]

Thus, the value of a is 26.95.

(d)

Compute the value of a as follows:

[tex]P(X\geq a)=\int\limits^{55}_{a} {\frac{1}{33}} \, dx \\\\0.89=\frac{1}{33}\cdot \int\limits^{55}_{a} {1} \, dx \\\\0.89\times 33=[x]^{55}_{a}\\\\29.37=55-a\\\\a=55-29.37\\\\a=25.63[/tex]

Thus, the value of a is 25.63.

(e)

Compute the value of a as follows:

[tex]P(1.83\leq X\leq a)=\int\limits^{a}_{1.83} {\frac{1}{33}} \, dx \\\\0.31=\frac{1}{33}\cdot \int\limits^{a}_{1.83} {1} \, dx \\\\0.31\times 33=[x]^{a}_{1.83}\\\\10.23=a-1.83\\\\a=10.23+1.83\\\\a=12.06[/tex]

Thus, the value of a is 12.06.