Answer:
126.01 rad/s^2
Explanation:
since it starts from rest, initial angular speed ω' = 0 rad/s
angular speed N = 477 rev/min
angular speed in rad/s ω = [tex]\frac{2\pi N}{60}[/tex] = [tex]\frac{2*3.142* 477}{60}[/tex] = 49.95 rad/s
angular displacement ∅ = 1.5758 rev
angular displacement in rad/s = [tex]2\pi N[/tex] = 2 x 3.142 x 1.5758 = 9.9 rad
angular acceleration [tex]\alpha[/tex] = ?
using the equation of angular motion
ω^2 = ω'^2 + 2[tex]\alpha[/tex]∅
imputing values, we have
[tex]49.95^{2} = 0^{2} + (2 *\alpha*9.9 )[/tex]
2495 = 19.8[tex]\alpha[/tex]
[tex]\alpha[/tex] = 2495/19.8 = 126.01 rad/s^2