During the time a compact disc (CD) accelerates from rest to a constant rotational speed of 477 rev/min, it rotates through an angular displacement of 1.5758 rev. What is the angular acceleration of the CD

Respuesta :

Answer:

126.01 rad/s^2

Explanation:

since it starts from rest, initial angular speed ω' = 0 rad/s

angular speed N = 477 rev/min

angular speed in rad/s ω = [tex]\frac{2\pi N}{60}[/tex] =  [tex]\frac{2*3.142* 477}{60}[/tex] = 49.95 rad/s

angular displacement ∅ = 1.5758 rev

angular displacement in rad/s = [tex]2\pi N[/tex] = 2 x 3.142 x 1.5758 = 9.9 rad

angular acceleration [tex]\alpha[/tex] = ?

using the equation of angular motion

ω^2 = ω'^2 + 2[tex]\alpha[/tex]∅

imputing values, we have

[tex]49.95^{2} = 0^{2} + (2 *\alpha*9.9 )[/tex]

2495 = 19.8[tex]\alpha[/tex]

[tex]\alpha[/tex] = 2495/19.8 = 126.01 rad/s^2