What if a solid cylinder of mass M = 2.50 kg, radius R = 2.18 cm, and length L = 2.7 cm, is rolling down from rest instead? With h = 79.60 m and x = 4.64 m, what is the center of mass velocity when the cylinder reaches the bottom?

Respuesta :

Answer:

The center of mass velocity is  [tex]v = 32.25 \ m/s[/tex]

Explanation:

From the question we are told that

          The mass of the cylinder is  [tex]m = 2.50 \ kg[/tex]

            The radius  is  [tex]r = 2.18 \ cm = 0.0218 \ m[/tex]

             The length is  [tex]l = 2.7 \ cm = 0.027 \ m[/tex]

              The height of the plane is  h  = 79.60  m

               and the distance covered is  [tex]d = 4.64 \ m[/tex]

The center of mass velocity o the cylinder when it reaches the bottom is mathematically represented as

              [tex]v = \sqrt{\frac{4gh}{3} }[/tex]

substituting values  

               [tex]v = \sqrt{ \frac{4 * 9.8 * 79.60}{3} }[/tex]

              [tex]v = 32.25 \ m/s[/tex]