Find the lateral area of a regular square pyramid if the base edges are of length 12 and the perpendicular height is 8.

Respuesta :

Answer:

Lateral area of the pyramid = 120 square units

Step-by-step explanation:

In the figure attached,

A pyramid has been given with square base with edges of 12 units and perpendicular height as 8 units.

Lateral area of a pyramid = Area of the lateral sides

Area of one lateral side = [tex]\frac{1}{2}(\text{Base})(\text{Lateral height})[/tex]

                                       = [tex]\frac{1}{2}(\frac{b}{2})(\sqrt{(\frac{b}{2})^2+h^2})[/tex]  [Since l = [tex]\sqrt{r^{2}+h^{2}}[/tex]]

                                       = [tex]\frac{1}{2}(6)(\sqrt{6^2+8^2})[/tex]

                                       = [tex]3\sqrt{100}[/tex]

                                       = 30 units²

Now lateral area of the pyramid = 4 × 30 = 120 square units

Ver imagen eudora

Answer: 240 units^2

Step-by-step explanation:

LA= 1/2 Pl

P= perimeter of base

l= lateral height

l= 8^2 + (12/2)^2 = 10^2

P= 12 x 4 = 48

48 x 10 = 480

480/2 = 240

240 units^2