A transition in the balmer series for hydrogen has an observed wavelength of 434 nm. Use the Rydberg equation below to find the energy level that the transition originated. Transitions in the Balmer series all terminate n=2.

Delta E= -2.178 x10-18J ( 1/n2Final - 1/n2Initial )

The number is 5.

What is the energy of this transition in units of kJ/mole? ( hint: the anser is NOT 4.58x10-22kJ/mole or -4.58x10-22kJ/mole)

Respuesta :

Answer:

i. n = 5

ii. ΔE = 7.61 × [tex]10^{-46}[/tex] KJ/mole

Explanation:

1. ΔE = (1/λ) = -2.178 × [tex]10^{-18}[/tex]([tex]\frac{1}{n^{2}_{final} }[/tex] - [tex]\frac{1}{n^{2}_{initial} }[/tex])

    (1/434 × [tex]10^{-9}[/tex]) = -2.178 × [tex]10^{-18}[/tex] ([tex]\frac{n^{2}_{initial} - n^{2}_{final} }{n^{2}_{final} n^{2}_{initial} }[/tex])

⇒ 434 × [tex]10^{-9}[/tex] = (1/-2.178 × [tex]10^{-18}[/tex])[tex]\frac{n^{2}_{final} *n^{2}_{initial} }{n^{2}_{initial} - n^{2}_{final} }[/tex]

But, [tex]n_{final}[/tex] = 2

434 × [tex]10^{-9}[/tex] = (1/2.178 × [tex]10^{-18}[/tex])[tex]\frac{2^{2} n^{2}_{initial} }{n^{2}_{initial} - 2^{2} }[/tex]

434 × [tex]10^{-9}[/tex]  × 2.178 × [tex]10^{-18}[/tex] = [tex](\frac{4n^{2}_{initial} }{n^{2}_{initial} - 4 })[/tex]

⇒ [tex]n_{initial}[/tex] = 5

Therefore, the initial energy level where transition occurred is from 5.

2. ΔE = hf

     = (hc) ÷ λ

    = (6.626 × 10−34 × 3.0 × [tex]10^{8}[/tex] ) ÷ (434 × [tex]10^{-9}[/tex])

    = (1.9878 × [tex]10^{-25}[/tex]) ÷ (434 × [tex]10^{-9}[/tex])

    = 4.58 × [tex]10^{-19}[/tex] J

    = 4.58 × [tex]10^{-22}[/tex] KJ

But 1 mole = 6.02×[tex]10^{23}[/tex], then;

energy in KJ/mole = (4.58 × [tex]10^{-22}[/tex] KJ) ÷ (6.02×[tex]10^{23}[/tex])

         = 7.61 × [tex]10^{-46}[/tex] KJ/mole

The initial energy level is 5  and the energy of this transition in units of kJ/mole is 7.57 * 10^-43 kJ/mole

We must first calculate ΔE as follows;

ΔE = hc/λ

h = Plank's constant = 6.6 * 10^-34 Js

c = speed of light = 3 * 10^8 m/s

λ = wavelength = 434 * 10^-9

ΔE =  6.6 * 10^-34 * 3 * 10^8/434 * 10^-9

ΔE = 0.0456 * 10^-17 J

ΔE = [tex]ΔE = -2.178 x10^-18 (\frac{1}{n^2final} - \frac{1}{n^2initial}) \\ΔE = -2.178 x10^-18 (\frac{1}{2^2} - \frac{1}{n^2initial} )\\\\4.56 * 10^-19/2.178 x10^-18 = (\frac{1}{2^2} - \frac{1}{n^2initial})\\0.210 = (\frac{1}{2^2} - \frac{1}{n^2initial})\\\frac{1}{n^2initial} = 0.25 - 0.210\\\frac{1}{n^2final} = 0.04\\n = (\sqrt{(0.04)^-1} \\n = 5[/tex]

Energy of this transition in units of kJ/mole = 4.56 * 10^-19/ 6.02 * 10^23

= 7.57 * 10^-43 kJ/mole

Learn more; https://brainly.com/question/5295294