Find the perimeter of the shaded region. Round your answer to the nearest hundredth.

Answer:
20.56 units.
Step-by-step explanation:
Perimeter of the shaded region is the sum of all straight sides and all 4 arcs.
Perimeter of 4 straight sides [tex]=4\times 2=8\text{ units}[/tex]
Perimeter of a arc [tex]=\dfrac{1}{4}\times 2\pi r[/tex]
Perimeter of 4 arcs [tex]=4\times \dfrac{1}{4}(2\pi r)=2\pi r[/tex]
Here, r is the radius. So,
[tex]r=\dfrac{6-2}{2}=\dfrac{4}{2}=2[/tex]
Perimeter of 4 arcs [tex]=2(3.14)(2)=12.56[/tex]
Perimeter of the shaded region = Perimeter of all straight sides + Perimeter of all 4 arcs
[tex]=8+12.56[/tex]
[tex]=20.56\text{ units}[/tex]
Therefore, the perimeter of the shaded region is 20.56 units.