Respuesta :
Answer:
0.015 radians per second.
Step-by-step explanation:
They tell us that at the moment the speed would be 6 ft / s, that is, dx / dt = 6 and those who ask us is dθ / dt.
Which we can calculate in the following way:
θ = arc sin 100/200 = pi / 6
Then we have the following equation of the attached image:
x / 100 = cot θ
we derive and we are left:
(1/100) * dx / dt = - (csc ^ 2) * θ * dθ / dt
dθ / dt = 0.01 * dx / dt / (- csc ^ 2 θ)
dθ / dt = 0.01 * 6 / (- csc ^ 2 pi / 6)
dθ / dt = 0.06 / (-2) ^ 2
dθ / dt = -0.015
So there is a decreasing at 0.015 radians per second.

The horizontal distance and the height of the kite are illustration of rates.
The angle is decreasing at a rate of 0.24 radian per second
The given parameters are:
[tex]\mathbf{Height =y= 100ft}[/tex]
[tex]\mathbf{Speed =\frac{dx}{dt}= 6fts^{-1}}[/tex]
[tex]\mathbf{Length = 200}[/tex]
See attachment for illustration
Calculate the angle using the following sine ratio
[tex]\mathbf{sin(\theta) = \frac{100}{200}}[/tex]
[tex]\mathbf{sin(\theta) = \frac{1}{2}}[/tex]
The horizontal displacement (x) is calculated using the following tangent ratio:
[tex]\mathbf{tan(\theta) = \frac{100}{x}}[/tex]
Take inverse of both sides
[tex]\mathbf{cot(\theta) = \frac{x}{100}}[/tex]
[tex]\mathbf{cot(\theta) = \frac{1}{100}x}[/tex]
Differentiate both sides with respect to time (t)
[tex]\mathbf{-csc^2(\theta) \cdot \frac{d\theta}{dt} = \frac{1}{100} \cdot \frac{dx}{dt}}[/tex]
Substitute known values
[tex]\mathbf{-csc^2(\theta) \cdot \frac{d\theta}{dt} = \frac{1}{100} \cdot 6}[/tex]
[tex]\mathbf{-csc^2(\theta) \cdot \frac{d\theta}{dt} = \frac{6}{100}}[/tex]
Recall that:
[tex]\mathbf{sin(\theta) = \frac{1}{2}}[/tex]
Take inverse of both sides
[tex]\mathbf{csc(\theta) = 2}[/tex]
Square both sides
[tex]\mathbf{csc^2(\theta) = 4}[/tex]
Substitute [tex]\mathbf{csc^2(\theta) = 4}[/tex] in [tex]\mathbf{-csc^2(\theta) \cdot \frac{d\theta}{dt} = \frac{6}{100}}[/tex]
[tex]\mathbf{-4 \cdot \frac{d\theta}{dt} = \frac{6}{100}}[/tex]
Divide both sides by -4
[tex]\mathbf{\frac{d\theta}{dt} = -\frac{24}{100}}[/tex]
[tex]\mathbf{\frac{d\theta}{dt} = -0.24}[/tex]
Hence, the angle is decreasing at a rate of 0.24 radian per second
Read more about rates at:
https://brainly.com/question/6672465