Respuesta :

Answer:

The equation of the tangent line of the given curve

  [tex]\frac{dy}{dx} = \frac{- (2x +2y +1)}{( 2 x - 2 y)}[/tex]

The tangent of the given curve at the point

 [tex](\frac{dy}{dx})_{(7,9)} = \frac{33}{4}[/tex]

Step-by-step explanation:

Explanation :-

Step(i):-

Given equation of the parabola

            x²+2xy−y²+x=101  ...(i)

apply derivative Formulas

   a)   [tex]\frac{dx^{n} }{dx} = n x ^{n-1}[/tex]

   b)  [tex]\frac{d U V }{dx} = U \frac{dV}{dx} + V \frac{dU}{dx}[/tex]

Step(ii):-

Differentiating equation (i) with respective to 'x' , we get

 [tex]2 x + 2 ( x \frac{dy}{dx} + y) - 2 y \frac{dy}{dx} +1 = 0[/tex]

 [tex]2 x + 2 x \frac{dy}{dx} +2 y - 2 y \frac{dy}{dx} +1 = 0[/tex]

on simplification , we get

[tex]( 2 x - 2 y) \frac{dy}{dx} = - (2x +2y +1)[/tex]

        [tex]\frac{dy}{dx} = \frac{- (2x +2y +1)}{( 2 x - 2 y)}[/tex]

The tangent of the given curve at the point ( 7,9)

    [tex](\frac{dy}{dx})_{(7,9)} = \frac{- ((2(7) +2(9) +1))}{( 2 (7) - 2 (9)}[/tex]

    [tex](\frac{dy}{dx})_{(7,9)} = \frac{- (33)}{( -4} = \frac{33}{4}[/tex]

Final answer :-

The equation of the tangent line of the given curve

  [tex]\frac{dy}{dx} = \frac{- (2x +2y +1)}{( 2 x - 2 y)}[/tex]

The tangent of the given curve at the point

 [tex](\frac{dy}{dx})_{(7,9)} = \frac{33}{4}[/tex]