Respuesta :

Answer:

a) [tex]f^{-1} (x) = \frac{1}{2} Cos^{-1} (\frac{x-1}{3} ) +\frac{3}{2}[/tex]

The inverse of given function

[tex]f^{-1} (x) = \frac{1}{2} Cos^{-1} (\frac{x-1}{3} ) +\frac{3}{2}[/tex]

Step-by-step explanation:

Step(i):-

Given function f(x) = 3 cos (2 x -3) + 1

Let y = f(x) = 3 cos (2 x -3) + 1

     y = 3 cos (2 x -3) + 1

   ⇒ y - 1 =  3 cos (2 x -3)

   ⇒   [tex]cos ( 2 x - 3 ) =\frac{y -1}{3}[/tex]

  ⇒[tex]cos ^{-1} ( cos (2 x - 3)) = Cos^{-1} (\frac{y-1}{3} )[/tex]

We know that inverse trigonometric equations

cos⁻¹(cosθ) = θ

[tex]2 x - 3 = Cos^{-1} (\frac{y-1}{3} )[/tex]

[tex]2 x = Cos^{-1} (\frac{y-1}{3} ) +3[/tex]

[tex]x = \frac{1}{2} Cos^{-1} (\frac{y-1}{3} ) +\frac{3}{2}[/tex]

Step(ii):-

we know that   y= f(x)

The inverse of the given function

                         [tex]x = f^{-1} (y)[/tex]

                    [tex]f^{-1} (y) = \frac{1}{2} Cos^{-1} (\frac{y-1}{3} ) +\frac{3}{2}[/tex]

The inverse of given function in terms of 'x'

                     [tex]f^{-1} (x) = \frac{1}{2} Cos^{-1} (\frac{x-1}{3} ) +\frac{3}{2}[/tex]

conclusion:-

 The inverse of given function

[tex]f^{-1} (x) = \frac{1}{2} Cos^{-1} (\frac{x-1}{3} ) +\frac{3}{2}[/tex]