Answer:
[tex] \boxed{\sf Surface \ area \ of \ a \ solid \ sphere = 616 \ cm^{2}} [/tex]
Given:
Diameter of a solid sphere = 14 cm
To Find:
Surface area of a solid sphere
Step-by-step explanation:
[tex]\sf Radius \: (r) = \frac{Diameter}{2} \\ \\ \sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \ \ \ \ \ = \frac{14}{2} \\ \\ \sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \ \ \ \ \ = 7 \: cm[/tex]
[tex]\sf Surface \ area \ of \ solid \ sphere = 4\pi r^{2} \\ \\ \sf \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 4 \times \frac{22}{7} \times {(7)}^{2} \\ \\ \sf \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 4 \times \frac{22}{ \cancel{7}} \times \cancel{7} \times 7 \\ \\ \sf \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 4 \times 22 \times 7 \\ \\ \sf \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 88 \times 7 \\ \\ \sf \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 616 \: {cm}^{2} [/tex]