Triangle ABC is an isosceles triangle in which side
AB = AC. What is the perimeter of triangle ABC?
5 + StartRoot 10 EndRoot units
10 + StartRoot 10 EndRoot units
10 StartRoot 10 EndRoot units
50 units

Respuesta :

Answer:

Option B.

Step-by-step explanation:

Consider the below figure attached with this question.

It is given that triangle ABC is an isosceles triangle.

From the below figure it is clear that the vertices of triangle are A(-2,-4), B(2,-1) and C(3,-4).

Distance formula:

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Using this formula, we get

[tex]AB=\sqrt{(2-(-2))^2+(-1-(-4))^2}=\sqrt{16+9}=5[/tex]

[tex]BC=\sqrt{(3-2)^2+(-4-(-1))^2}=\sqrt{1+9}=\sqrt{10}[/tex]

[tex]AC=\sqrt{(3-(-2))^2+(-4-(-4))^2}=\sqrt{25}=5[/tex]

Now,

Perimeter of triangle ABC = AB + BC + AC

                        [tex]=5+\sqrt{10}+5[/tex]

                        [tex]=10+\sqrt{10}[/tex]

So, perimeter of triangle ABC is [tex]10+\sqrt{10}[/tex] units.

Therefore, the correct option is B.

Ver imagen erinna
bec97

Answer:

10 + √10 units

Step-by-step explanation: