Human body temperatures are normally distributed with a mean of 98.2oF and a standard deviation of 0.62oF. Find the temperature that separates the bottom 12% from the top 88%.

Respuesta :

Answer:

The temperature that separates the bottom 12% from the top 88% is 97.5°F.

Step-by-step explanation:

We are given that human body temperatures are normally distributed with a mean of 98.2°F and a standard deviation of 0.62°F.

Let X = human body temperatures

So, X ~ Normal([tex]\mu= 98.2,\sigma^{2} = 0.62^{2}[/tex])

The z-score probability distribution for the normal distribution is given by;

                            Z  =  [tex]\frac{X-\mu}{\sigma}[/tex]  ~ N(0,1)

where, [tex]\mu[/tex] = mean human body temperature = 98.2°F

           [tex]\sigma[/tex] = stnadard deviation = 0.62°F

Now, we have to find the temperature that separates the bottom 12% from the top 88%, that means;

        P(X < x) = 0.12       {where x is the required temperature}

        P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{x-98.2}{0.62}[/tex] ) = 0.12

        P(Z < [tex]\frac{x-98.2}{0.62}[/tex] ) = 0.12

Now, the critical value of x that represents the bottom 12% of the area in the z table is given as -1.1835, that is;

                    [tex]\frac{x-98.2}{0.62} = -1.1835[/tex]

  ��                 [tex]{x-98.2}= -1.1835\times 0.62[/tex]

                     [tex]x = 98.2 -0.734[/tex] = 97.5°F

Hence, the temperature that separates the bottom 12% from the top 88% is 97.5°F.