Respuesta :

Answer:

[tex]f = \frac{1}{\frac{1}{u}+\frac{1}{v} }[/tex]

Step-by-step explanation:

[tex]1/u=1/f-1/v\\\frac{1}{f} = \frac{1}{v} +\frac{1}{u} \\Divide- both- sides- by; 1\\\frac{1}{f} \div \frac{1}{1} = (\frac{1}{v} + \frac{1}{u}) \div \frac{1}{1}\\\\f = \frac{1}{\frac{1}{u}+ \frac{1}{v} }[/tex]

Answer:

f = uv/(v+u)

Step-by-step explanation:

1/u = 1/f - 1/v

1/u + 1/v = 1/f

(v+u) ÷ uv = 1 ÷ f

multiply both sides by uvf

f(v+u) = uv

f = uv / (v+u)