Respuesta :
Answer:
[tex]f = \frac{1}{\frac{1}{u}+\frac{1}{v} }[/tex]
Step-by-step explanation:
[tex]1/u=1/f-1/v\\\frac{1}{f} = \frac{1}{v} +\frac{1}{u} \\Divide- both- sides- by; 1\\\frac{1}{f} \div \frac{1}{1} = (\frac{1}{v} + \frac{1}{u}) \div \frac{1}{1}\\\\f = \frac{1}{\frac{1}{u}+ \frac{1}{v} }[/tex]
Answer:
f = uv/(v+u)
Step-by-step explanation:
1/u = 1/f - 1/v
1/u + 1/v = 1/f
(v+u) ÷ uv = 1 ÷ f
multiply both sides by uvf
f(v+u) = uv
f = uv / (v+u)