Respuesta :

Answer:

[tex] m\angle A = 72\degree \\

m\angle B = 108\degree [/tex]

Step-by-step explanation:

ABCD is a parallelogram.

Since, opposite angles of a parallelogram are congruent.

[tex] \therefore m\angle A = m\angle C\\

\therefore (5y-3)\degree = (3y+27)\degree \\

\therefore 5y - 3= 3y +27\\

\therefore 5y-3y = 27+3\\

\therefore 2y = 30\\\\

\therefore y = \frac{30}{2} \\\\

\therefore y = 15\\

\because m\angle A = (5y-3)\degree \\

\therefore m\angle A = (5\times 15-3)\degree \\

\therefore m\angle A = (75-3)\degree \\

\huge{\red {\boxed {\therefore m\angle A = 72\degree}}} \\\\

\because m\angle A + m\angle B = 180\degree(opposite \: \angle 's\: of\:a\: \parallel ^{gm}) \\

\therefore m\angle B = 180\degree - 72\degree \\

\huge{\purple {\boxed {\therefore m\angle B = 108\degree}}} [/tex]