Find the interval of convergence of the power series. (Be sure to include a check for convergence at the endpoints of the interval. If the answer is an interval, enter your answer using interval notation. If the answer is a finite set of values, enter your answers as a comma separated list of values.)

Respuesta :

Answer:

(0, 16]

Step-by-step explanation:

∑ₙ₌₁°° (-1)ⁿ⁺¹ (x−8)ⁿ / (n 8ⁿ)

According to the ratio test, if we define L such that:

L = lim(n→∞) |aₙ₊₁ / aₙ|

then the series will converge if L < 1.

aₙ = (-1)ⁿ⁺¹ (x−8)ⁿ / (n 8ⁿ)

aₙ₊₁ = (-1)ⁿ⁺² (x−8)ⁿ⁺¹ / ((n+1) 8ⁿ⁺¹)

Plugging into the ratio test:

L = lim(n→∞) | (-1)ⁿ⁺² (x−8)ⁿ⁺¹ / ((n+1) 8ⁿ⁺¹) × n 8ⁿ / ((-1)ⁿ⁺¹ (x−8)ⁿ) |

L = lim(n→∞) | -n (x−8) / (8 (n+1)) |

L = (|x−8| / 8) lim(n→∞) | n / (n+1) |

L = |x−8| / 8

For the series to converge:

L < 1

|x−8| / 8 < 1

|x−8| < 8

-8 < x−8 < 8

0 < x < 16

Now we check the endpoints.  If x = 0:

∑ₙ₌₁°° (-1)ⁿ⁺¹ (0−8)ⁿ / (n 8ⁿ)

∑ₙ₌₁°° -(-1)ⁿ (-8)ⁿ / (n 8ⁿ)

∑ₙ₌₁°° -(8)ⁿ / (n 8ⁿ)

∑ₙ₌₁°° -1 / n

This is a harmonic series, and diverges.

If x = 16:

∑ₙ₌₁°° (-1)ⁿ⁺¹ (16−8)ⁿ / (n 8ⁿ)

∑ₙ₌₁°° (-1)ⁿ⁺¹ (8)ⁿ / (n 8ⁿ)

∑ₙ₌₁°° (-1)ⁿ⁺¹ / n

This is an alternating series, and converges.

Therefore, the interval of convergence is:

0 < x ≤ 16

Or, in interval notation, (0, 16].