Answer:
a. 47.48%
b. 35.58%
c. 2957.715 KW
Explanation:
[tex]T_2 =T_1 + \dfrac{T_{2s} - T_1}{\eta _c}[/tex]
T₁ = 300 K
[tex]\dfrac{T_{2s}}{T_1} = \left( \dfrac{P_{2}}{P_1} \right)^{\dfrac{k-1}{k} }[/tex]
[tex]T_{2s} = 300 \times (10) ^{\dfrac{0.4}{1.4} }[/tex]
[tex]T_{2s}[/tex] = 579.21 K
T₂ = 300+ (579.21 - 300)/0.8 = 649.01 K
T₃ = T₂ + [tex]\epsilon _{regen}[/tex](T₅ - T₂)
T₄ = 1400 K
Given that the pressure ratios across each turbine stage are equal, we have;
[tex]\dfrac{T_{5s}}{T_4} = \left( \dfrac{P_{5}}{P_4} \right)^{\dfrac{k-1}{k} }[/tex]
[tex]T_{5s}[/tex] = 1400×[tex]\left( 1/\sqrt{10} \right)^{\dfrac{0.4}{1.4} }[/tex] = 1007.6 K
T₅ = T₄ + ([tex]T_{5s}[/tex] - T₄)/[tex]\eta _t[/tex] = 1400 + (1007.6- 1400)/0.8 = 909.5 K
T₃ = T₂ + [tex]\epsilon _{regen}[/tex](T₅ - T₂)
T₃ = 649.01 + 0.8*(909.5 - 649.01 ) = 857.402 K
T₆ = 1400 K
[tex]\dfrac{T_{7s}}{T_6} = \left( \dfrac{P_{7}}{P_6} \right)^{\dfrac{k-1}{k} }[/tex]
[tex]T_{7s}[/tex] = 1400×[tex]\left( 1/\sqrt{10} \right)^{\dfrac{0.4}{1.4} }[/tex] = 1007.6 K
T₇ = T₆ + ([tex]T_{7s}[/tex] - T₆)/[tex]\eta _t[/tex] = 1400 + (1007.6 - 1400)/0.8 = 909.5 K
a. [tex]W_{net \ out}[/tex] = cp(T₆ -T₇) = 1.005 * (1400 - 909.5) = 492.9525 KJ/kg
Heat supplied is given by the relation
cp(T₄ - T₃) + cp(T₆ - T₅) = 1.005*((1400 - 857.402) + (1400 - 909.5)) = 1038.26349 kJ/kg
Thermal efficiency of the cycle = (Net work output)/(Heat supplied)
Thermal efficiency of the cycle = (492.9525 )/(1038.26349 ) =0.4748 = 47.48%
b. [tex]bwr = \dfrac{W_{c,in}}{W_{t,out}}[/tex]
bwr = (T₂ -T₁)/[(T₄ - T₅) +(T₆ -T₇)] = (649.01 - 300)/((1400 - 909.5) + (1400 - 909.5)) = 35.58%
c. Power = 6 kg *492.9525 KJ/kg = 2957.715 KW