Here are summary statistics for randomly selected weights of newborn​ girls: nequals153​, x overbarequals31.5 ​hg, sequals7.1 hg. Construct a confidence interval estimate of the mean. Use a 90​% confidence level. Are these results very different from the confidence interval 30.4 hgless thanmuless than32.8 hg with only 15 sample​ values, x overbarequals31.6 ​hg, and sequals2.7 ​hg?

Respuesta :

Answer:

yes it is little different  from the confidence interval (30.4 ≤μ≤ 32.8) changes statistics

90% confidence interval estimate of the mean is

(30.1048 , 33.0952)

Step-by-step explanation:

Step(I):-

Given sample size 'n' = 153

Given mean of the sample x⁻ = 31.5

Sample standard deviation 'S' = 7.1 h g

90% confidence interval estimate of the mean is determined by

[tex](x^{-} - t_{\frac{\alpha }{2} } \frac{S}{\sqrt{n} } , x^{-} + t_{\frac{\alpha }{2} } \frac{S}{\sqrt{n} } )[/tex]

Degrees of freedom

ν = n-1 = 153-1 =152

t₀.₀₅ =1.9757

Step(ii)

90% confidence interval estimate of the mean is

[tex](x^{-} - t_{\frac{\alpha }{2} } \frac{S}{\sqrt{n} } , x^{-} + t_{\frac{\alpha }{2} } \frac{S}{\sqrt{n} } )[/tex]

[tex](31.5 - 1.9757 } \frac{7.1}{\sqrt{153} } , 31.5 + 1.9757 \frac{7.1}{\sqrt{153} } )[/tex]

( 31.5 - 1.1340 , 31.5 + 1.1340)

(30.366 , 32.634)

90% confidence interval estimate of the mean is

(30.4 , 32.6)

b)

Given sample size 'n' = 15

Given mean of the sample x⁻ = 31.6

Sample standard deviation 'S' = 2.7 h g

90% confidence interval estimate of the mean is determined by

[tex](x^{-} - t_{\frac{\alpha }{2} } \frac{S}{\sqrt{n} } , x^{-} + t_{\frac{\alpha }{2} } \frac{S}{\sqrt{n} } )[/tex]

Degrees of freedom

ν = n-1 = 15-1 =14

t₀.₀₅ =2.1448

90% confidence interval estimate of the mean is

[tex](x^{-} - t_{\frac{\alpha }{2} } \frac{S}{\sqrt{n} } , x^{-} + t_{\frac{\alpha }{2} } \frac{S}{\sqrt{n} } )[/tex]

[tex](31.6 - 2.1448 } \frac{2.7}{\sqrt{15} } , 31.6 + 2.1448 \frac{2.7}{\sqrt{15} } )[/tex]

( 31.6 - 1.4952 , 31.6 + 1.4952)

(30.1048 , 33.0952)

Conclusion:-

yes it is little different  from the confidence interval (30.4 ≤μ≤32.8)