Which answer needs to be true to be able to use the SSS Congruence Postulate to prove △ABC≅△DBC? AB¯¯¯¯¯¯¯¯≅DB¯¯¯¯¯¯¯¯ and ∠ACB≅∠DCB ∠ACB≅∠DCB and ∠A≅∠D AB¯¯¯¯¯¯¯¯≅DB¯¯¯¯¯¯¯¯ and AC¯¯¯¯¯¯¯¯≅DC¯¯¯¯¯¯¯¯ AB¯¯¯¯¯¯¯¯≅DB¯¯¯¯¯¯¯¯ or AC¯¯¯¯¯¯¯¯≅DC¯¯¯¯¯¯¯¯

Respuesta :

Answer:

The correct option is;

[tex]\overline{AB}\cong \overline{DB}[/tex]  and  [tex]\overline{AC}\cong \overline{DC}[/tex]

Step-by-step explanation:

The steps to prove that ΔABC ≅ ΔDBC with the SSS Congruence postulate

We have;

Statement,                     Reason

BC ≅ BC,                       Reflexive property

[tex]\overline{AB}\cong \overline{DB}[/tex],                      Option selected

[tex]\overline{AC}\cong \overline{DC}[/tex],                      Option selected

ΔABC ≅ ΔDBC,              SSS Congruency Postulate

Therefore, whereby all three sides of the triangles ABC and DBC are congruent, then ΔABC is congruent to ΔDBC.