Note: The matrix referred to in the question is: [tex]M = \left[\begin{array}{ccc}1/2&1/3&0\\1/2&1/3&0\\0&1/3&1\end{array}\right][/tex]
Answer:
a) [5/18, 5/18, 4/9]'
Explanation:
The adjacency matrix is [tex]M = \left[\begin{array}{ccc}1/2&1/3&0\\1/2&1/3&0\\0&1/3&1\end{array}\right][/tex]
To start the power iteration, let us start with an initial non zero approximation,
[tex]X_o = \left[\begin{array}{ccc}1\\1\\1\end{array}\right][/tex]
To get the rank vector for the first Iteration:
[tex]X_1 = MX_0[/tex]
[tex]X_1 = \left[\begin{array}{ccc}1/2&1/3&0\\1/2&1/3&0\\0&1/3&1\end{array}\right]\left[\begin{array}{ccc}1\\1\\1\end{array}\right] \\\\X_1 = \left[\begin{array}{ccc}5/6\\5/6\\4/3\end{array}\right]\\[/tex]
Multiplying the above matrix by 1/3
[tex]X_1 = \left[\begin{array}{ccc}5/18\\5/18\\4/9\end{array}\right][/tex]