You can find this using the distance formula.
d = [tex] \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex] Plug your coordinates into the formula
d = [tex] \sqrt{(29 - 43)^2 + (-3 -(-15))^2} [/tex] Simplify the double negative
d = [tex] \sqrt{(29 - 43)^2 + (-3 + 15)^2} [/tex] Subtract and Add inside the parentheses
d = [tex] \sqrt{(-14)^2 + (12)^2} [/tex] Simplify the exponents
d = [tex] \sqrt{196 + 144} [/tex] Add
d = [tex] \sqrt{340} [/tex]
d ≈ 18.493