Respuesta :

2/x - 3 Hope that helps.

Answer:  The required inverse function is [tex]f^{-1}(x)=\dfrac{x-3}{2}.[/tex]

Step-by-step explanation:  We are given to find the inverse of the following linear function :

[tex]f(x)=2x+3~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]

Let us consider that

[tex]f(x)=y~~~~~\Rightarrow x=f^{-1}(y).[/tex]

From equation (i), we have

[tex]f(x)=2x+3\\\\\Rightarrow y=2f^{-1}(y)+3\\\\\Rightarrow 2f^{-1}(y)=y-3\\\\\Rightarrow f^{-1}(y)=\dfrac{y-3}{2}\\\\\Rightarrow f^{-1}(x)=\dfrac{x-3}{2}.[/tex]

Thus, the required inverse function is [tex]f^{-1}(x)=\dfrac{x-3}{2}.[/tex]