Two blocks A and B have a weight of 11 lb and 5 lb , respectively. They are resting on the incline for which the coefficients of static friction are μA = 0.16 and μB = 0.23. Determine the incline angle θ for which both blocks begin to slide. Also find the required stretch or compression in the connecting spring for this to occur. The spring has a stiffness of k = 2.1 lb/ft .

Respuesta :

Answer:

[tex]\theta=10.20^{\circ}[/tex]  

[tex]\Delta l=0.10 ft[/tex]    

Explanation:

First of all, we analyze the system of blocks before starting to move.

[tex]\Sum F_{x}=P_{A}sin(\theta)+P_{B}sin(\theta)-F_{fA}-F_{fB}=0[/tex]  

[tex]\Sum F_{x}=11sin(\theta)+5sin(\theta)-0.16N_{A}-0.23N_{B}=0[/tex]

[tex]11sin(\theta)+5sin(\theta)-0.16P_{A}cos(\theta)-0.23P_{B}cos(\theta)=0[/tex]

[tex]11sin(\theta)+5sin(\theta)-0.16*11cos(\theta)-0.23*5cos(\theta)=0[/tex]

[tex]11sin(\theta)+5sin(\theta)-0.16*11cos(\theta)-0.23*5cos(\theta)=0[/tex]  

[tex]16sin(\theta)-2.91cos(\theta)=0[/tex]  

[tex]tan(\theta)=0.18[/tex]  

[tex]\theta=arctan(0.18)[/tex]  

[tex]\theta=10.20^{\circ}[/tex]  

Hence, the incline angle θ for which both blocks begin to slide is 10.20°.

Now, if we do a free body diagram of block A we have that after the block moves, the spring force must be taken into account.  

[tex]P_{A}sin(\theta)-F_{fA}-F_{spring}=0[/tex]

Where:

[tex]F_{spring} = k\Delta l=2.1\Delta l[/tex]

[tex]P_{A}sin(\theta)-0.16*11cos(\theta)-2.1\Delta l=0[/tex]

[tex]\Delta l=\frac{11sin(\theta)-0.16*11cos(\theta)}{2.1}[/tex]

[tex]\Delta l=0.10 ft[/tex]    

Therefore, the required stretch or compression in the connecting spring is 0.10 ft.

I hope it helps you!

(a) The inclined angle for which both blocks begin to slide is 10.3⁰.

(b) The compression of the spring is 0.22 ft.

The given parameters;

  • mass of block A, = 11 lb
  • mass of block B, = 5 lb
  • coefficient of static friction for A, = 0.16
  • coefficient of static friction for B, = 0.23
  • spring constant, k = 2.1 lb/ft

The normal force on block A and B:

[tex]F_n_A = m_Agcos \ \theta\\\\F_n_B = m_Bgcos \ \theta[/tex]

The frictional force on block A and B:

[tex]F_f_A = \mu_s_AF_n_A \\\\F_f_B = \mu_s_BF_n_A[/tex]

The net force on the blocks when they starts sliding;

[tex](m_Ag sin \theta+ m_Bgsin\theta) - (F_f_A + F_f_B) = 0\\\\m_Ag sin \theta+ m_Bgsin\theta = F_f_A + F_f_B\\\\m_Ag sin \theta+ m_Bgsin\theta = \mu_Am_Agcos\theta \ + \ \mu_Bm_Bgcos\theta\\\\gsin\theta(m_A + m_B) = gcos\theta (\mu_Am_A + \mu_Bm_B)\\\\\frac{sin\theta}{cos \theta} = \frac{\mu_Am_A\ + \ \mu_Bm_B}{m_A\ + \ m_B} \\\\tan\theta = \frac{(0.16\times 11) \ + \ (0.23 \times 5)}{11 + 5} \\\\tan\theta = 0.1819\\\\\theta = tan^{-1}(0.1819)\\\\\theta = 10.3 \ ^0[/tex]

The change in the energy of the blocks is the work done in compressing the spring;

[tex]\Delta E = W\\\\F_A (sin \theta )d- \mu F_n d= \frac{1}{2} kd^2\\\\F_A sin\theta \ - \ \mu F_A cos\theta = \frac{1}{2} kd\\\\d = \frac{2F_A(sin\theta - \mu cos \theta) }{k} \\\\d = \frac{2\times 11(sin \ 10.3\ - \ 0.16\times cos \ 10.3) }{2.1} \\\\d = 0.22 \ ft[/tex]

Learn more here:https://brainly.com/question/16892315