Respuesta :

Answer:

B

Step-by-step explanation:

(To save time, I'm going to use x instead of θ)

So we have the expression:

[tex](\sin(x)-\cos(x))^2+(\sin(x)+\cos(x))^2[/tex]

First, expand these binomials:

[tex]=(\sin^2(x)-2\sin(x)\cos(x)+\cos^2(x))+(\sin^2(x)+2\sin(x)\cos(x)+\cos^2(x))[/tex]

Combine like terms:

[tex]=\sin^2(x)+\sin^2(x)+\cos^2(x)+\cos^2(x)-2\sin(x)\cos(x)+2\sin(x)\cos(x)\\=2\sin^2(x)+2\cos^2(x)[/tex]

Factor out a 2:

[tex]=2(\sin^2(x)+\cos^2(x))[/tex]

The expression inside the parentheses is the Pythagorean Identity:

[tex]\sin^2(x)+\cos^2(x)=1[/tex]

Substitute:

[tex]=2(1)\\=2[/tex]

The answer is B.