A solution contains 2.2 × 10-3 M in Cu2+ and 0.33 M in LiCN. If the Kf for Cu(CN)42- is 1.0 × 1025, how much copper ion remains at equilibrium?

Respuesta :

Answer:

[Cu²⁺] = 2.01x10⁻²⁶

Explanation:

The equilibrium of Cu(CN)₄²⁻ is:

Cu²⁺ + 4CN⁻ ⇄ Cu(CN)₄²⁻

And Kf is defined as:

Kf = 1.0x10²⁵ = [Cu(CN)₄²⁻] / [Cu²⁺] [CN⁻]⁴

As Kf is too high you can assume all Cu²⁺ is converted in Cu(CN)₄²⁻ -Cu²⁺ is limiting reactant-, the new concentrations will be:

[Cu²⁺] = 0

[CN⁻] = 0.33M - 4×2.2x10⁻³ = 0.3212M

[Cu(CN)₄²⁻] = 2.2x10⁻³

Some [Cu²⁺] will be formed and equilibrium concentrations will be:

[Cu²⁺] = X

[CN⁻] = 0.3212M + 4X

[Cu(CN)₄²⁻] = 2.2x10⁻³ - X

Where X is reaction coordinate

Replacing in Kf equation:

1.0x10²⁵ = [2.2x10⁻³ - X] / [X] [0.3212M +4X]⁴

1.0x10²⁵ = [2.2x10⁻³ - X] / 0.0104858X + 0.524288 X² + 9.8304 X³ + 81.92 X⁴ + 256 X⁵

1.04858x10²³X + 5.24288x10²⁴ X² + 9.8304x10²⁵ X³ + 8.192x10²⁶ X⁴ + 2.56x10²⁷ X⁵ = 2.2x10⁻³ - X

1.04858x10²³X + 5.24288x10²⁴ X² + 9.8304x10²⁵ X³ + 8.192x10²⁶ X⁴ + 2.56x10²⁷ X⁵ - 2.2x10⁻³ = 0

Solving for X:

X = 2.01x10⁻²⁶

As

[Cu²⁺] = X

[Cu²⁺] = 2.01x10⁻²⁶