A green light is submerged 2.70 m beneath the surface of a liquid with an index of refraction 1.31. What is the radius of the circle from which light escapes from the liquid into the air above the surface

Respuesta :

Answer:

The radius is  [tex]r = 3.1905 \ m[/tex]

Explanation:

From the question we are told that

        The  distance  beneath the liquid  is  [tex]d = 2.70 \ m[/tex]

        The refractive index of the liquid is  [tex]n_i = 1.31[/tex]

Now the critical value is mathematically represented as

         [tex]\theta = sin ^{-1} [\frac{1}{n_i} ][/tex]

substituting values

         [tex]\theta = sin ^{-1} [\frac{1}{131} ][/tex]

         [tex]\theta = 49.76^o[/tex]

Using SOHCAHTOA rule we have that

         [tex]tan \theta = \frac{ r}{d}[/tex]

=>     [tex]r = d * tan \theta[/tex]

substituting values  

        [tex]r = 2.7 * tan (49.76)[/tex]

        [tex]r = 3.1905 \ m[/tex]