Answer:
The pH of the solution is 9.06.
Explanation:
The reaction of the dissociation of NH₃ in water is:
NH₃(aq) + H₂O(l) ⇄ NH₄⁺(aq) + OH⁻(aq) (1)
[NH₃] - x [NH₄⁺] + x x
The concentration of NH₃ and NH₄⁺ is:
[tex] [NH_{3}] = \frac{n_{NH_{3}}}{V_{T}} = \frac{C_{i}_{(NH_{3})}*Vi_{NH_{3}}}{V_{NH_{3}} + V_{NH_{4}^{+}}} = \frac{0.12 M*0.2 L}{0.2 L + 0.25 L} = 0.053 M [/tex]
[tex] [NH_{4}^{+}] = \frac{C_{i}_{(NH_{4}^{+})*V_{NH_{4}^{+}}}}{V_{NH_{3}} + V_{NH_{4}^{+}}} = \frac{0.15 M*0.25 L}{0.2 L + 0.25 L} = 0.083 M [/tex]
From equation (1) we have:
[tex]Kb = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}[/tex]
[tex] 1.8 \cdot 10^{-5} = \frac{(0.083 + x)*x}{0.053 - x} [/tex]
[tex] 1.8 \cdot 10^{-5}(0.053 - x) - (0.083 + x)*x = 0 [/tex]
By solving the above equation for x we have:
x = 1.15x10⁻⁵ = [OH⁻]
The pH of the solution is:
[tex] pOH = -log([OH^{-}]) = -log(1.15 \cdot 10^{-5}) = 4.94 [/tex]
[tex] pH = 14 - pOH = 14 - 4.94 = 9.06 [/tex]
Therefore, the pH of the solution is 9.06.
I hope it helps you!