contestada

Calculate the pH of a solution formed by mixing 250.0 mL of 0.15 M NH4Cl with 200.0 mL of 0.12 M NH3. The Kb for NH3 is 1.8 × 10-5.

Respuesta :

Answer:

The pH of the solution is 9.06.

Explanation:

The reaction of the dissociation of NH₃ in water is:

NH₃(aq) + H₂O(l)  ⇄  NH₄⁺(aq) + OH⁻(aq)     (1)

[NH₃] - x                     [NH₄⁺] + x     x  

The concentration of NH₃ and NH₄⁺ is:

[tex] [NH_{3}] = \frac{n_{NH_{3}}}{V_{T}} = \frac{C_{i}_{(NH_{3})}*Vi_{NH_{3}}}{V_{NH_{3}} + V_{NH_{4}^{+}}} = \frac{0.12 M*0.2 L}{0.2 L + 0.25 L} = 0.053 M [/tex]

[tex] [NH_{4}^{+}] = \frac{C_{i}_{(NH_{4}^{+})*V_{NH_{4}^{+}}}}{V_{NH_{3}} + V_{NH_{4}^{+}}} = \frac{0.15 M*0.25 L}{0.2 L + 0.25 L} = 0.083 M [/tex]

From equation (1) we have:

[tex]Kb = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}[/tex]

[tex] 1.8 \cdot 10^{-5} = \frac{(0.083 + x)*x}{0.053 - x} [/tex]

[tex] 1.8 \cdot 10^{-5}(0.053 - x) - (0.083 + x)*x = 0 [/tex]

By solving the above equation for x we have:

x =  1.15x10⁻⁵ = [OH⁻]

The pH of the solution is:

[tex] pOH = -log([OH^{-}]) = -log(1.15 \cdot 10^{-5}) = 4.94 [/tex]

[tex] pH = 14 - pOH = 14 - 4.94 = 9.06 [/tex]

Therefore, the pH of the solution is 9.06.

I hope it helps you!