Answer: Tension = 47.8N, Δx = 11.5×[tex]10^{-6}[/tex] m.
Tension = 95.6N, Δx = 15.4×[tex]10^{-5}[/tex] m
Explanation: A speed of wave on a string under a tension force can be calculated as:
[tex]|v| = \sqrt{\frac{F_{T}}{\mu} }[/tex]
[tex]F_{T}[/tex] is tension force (N)
μ is linear density (kg/m)
Determining velocity:
[tex]|v| = \sqrt{\frac{47.8}{5.47.10^{-3}} }[/tex]
[tex]|v| = \sqrt{0.00874 }[/tex]
[tex]|v| =[/tex] 0.0935 m/s
The displacement a pulse traveled in 1.23ms:
[tex]\Delta x = |v|.t[/tex]
[tex]\Delta x = 9.35.10^{-2}*1.23.10^{-3}[/tex]
Δx = 11.5×[tex]10^{-6}[/tex]
With tension of 47.8N, a pulse will travel Δx = 11.5×[tex]10^{-6}[/tex] m.
Doubling Tension:
[tex]|v| = \sqrt{\frac{2*47.8}{5.47.10^{-3}} }[/tex]
[tex]|v| = \sqrt{2.0.00874 }[/tex]
[tex]|v| = \sqrt{0.01568}[/tex]
|v| = 0.1252 m/s
Displacement for same time:
[tex]\Delta x = |v|.t[/tex]
[tex]\Delta x = 12.52.10^{-2}*1.23.10^{-3}[/tex]
[tex]\Delta x =[/tex] 15.4×[tex]10^{-5}[/tex]
With doubled tension, it travels [tex]\Delta x =[/tex] 15.4×[tex]10^{-5}[/tex] m